Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697139

RESUMO

Jumping microrobots and insects power their impressive leaps through systems of springs and latches. Using springs and latches, rather than motors or muscles, as actuators to power jumps imposes new challenges on controlling the performance of the jump. In this paper, we show how tuning the motor and spring relative to one another in a torque reversal latch can lead to an ability to control jump output, producing either tuneable (variable) or stereotyped jumps. We developed and utilized a simple mathematical model to explore the underlying design, dynamics, and control of a torque reversal mechanism, provides the opportunity to achieve different outcomes through the interaction between geometry, spring properties, and motor voltage. We relate system design and control parameters to performance to guide the design of torque reversal mechanisms for either variable or stereotyped jump performance. We then build a small 356 mg microrobot and characterize the constituent components (e.g., motor and spring). Through tuning the actuator and spring relative to the geometry of the torque reversal mechanism, we demonstrate that we can achieve jumping microrobots that both jump with different take-off velocities given the actuator input (variable jumping), and those that jump with nearly the same take-off velocity with actuator input (stereotyped jumping). The coupling between spring characteristics and geometry in this system has benefits for resource-limited microrobots, and our work highlights design combinations that have synergistic impacts on output, compared to others that constrain it. This work will guide new design principles for enabling control in resource-limited jumping microrobots.

2.
Bioinspir Biomim ; 18(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36595244

RESUMO

Ultrafast movements propelled by springs and released by latches are thought limited to energetic adjustments prior to movement, and seemingly cannot adjust once movement begins. Even so, across the tree of life, ultrafast organisms navigate dynamic environments and generate a range of movements, suggesting unrecognized capabilities for control. We develop a framework of control pathways leveraging the non-linear dynamics of spring-propelled, latch-released systems. We analytically model spring dynamics and develop reduced-parameter models of latch dynamics to quantify how they can be tuned internally or through changing external environments. Using Lagrangian mechanics, we test feedforward and feedback control implementation via spring and latch dynamics. We establish through empirically-informed modeling that ultrafast movement can be controllably varied during latch release and spring propulsion. A deeper understanding of the interconnection between multiple control pathways, and the tunability of each control pathway, in ultrafast biomechanical systems presented here has the potential to expand the capabilities of synthetic ultra-fast systems and provides a new framework to understand the behaviors of fast organisms subject to perturbations and environmental non-idealities.


Assuntos
Movimento , Dinâmica não Linear , Fenômenos Biomecânicos
3.
Curr Biol ; 31(3): R116-R117, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561405

RESUMO

Surprisingly, the fastest motions are not produced by large animals or robots. Rather, small organisms or structures, including cnidarian stinging cells, fungal shooting spores, and mandible strikes of ants, termites, and spiders, hold the world acceleration records.1-5 These diverse systems share common features: they rapidly convert potential energy - stored in deformed material or fluid - into kinetic energy when a latch is released.4-6 However, the fastest of these are not repeatable, because mechanical components are broken or ejected.5,6 Furthermore, some of these systems must overcome the added challenge of moving in water, where high density and viscosity constrain acceleration at small sizes. Here we report the kinematics of repeatable, ultrafast snaps by tiny marine amphipods (Dulichiella cf. appendiculata). Males use their enlarged major claw, which can exceed 30% of body mass, to snap a 1 mm-long dactyl with a diameter equivalent to a human hair (184 µm). The claw snaps closed extremely rapidly, averaging 93 µs, 17 m s-1, and 2.4 x 105 m s-2. These snaps are among the smallest and fastest of any documented repeatable movement, and are sufficiently fast to operate in the inertial hydrodynamic regime (Reynolds number (Re) >10,000). They generate audible pops and rapid water jets, which occasionally yield cavitation, and may be used for defense. These amphipod snaps push the boundaries of acceleration and size for repeatable movements, particularly in water, and exemplify how new biomechanical insights can arise from unassuming animals. VIDEO ABSTRACT.


Assuntos
Anfípodes , Movimento , Animais , Fenômenos Biomecânicos , Humanos , Masculino , Água
4.
J Exp Biol ; 222(Pt 15)2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399509

RESUMO

Rapid biological movements, such as the extraordinary strikes of mantis shrimp and accelerations of jumping insects, have captivated generations of scientists and engineers. These organisms store energy in elastic structures (e.g. springs) and then rapidly release it using latches, such that movement is driven by the rapid conversion of stored elastic to kinetic energy using springs, with the dynamics of this conversion mediated by latches. Initially drawn to these systems by an interest in the muscle power limits of small jumping insects, biologists established the idea of power amplification, which refers both to a measurement technique and to a conceptual framework defined by the mechanical power output of a system exceeding muscle limits. However, the field of fast elastically driven movements has expanded to encompass diverse biological and synthetic systems that do not have muscles - such as the surface tension catapults of fungal spores and launches of plant seeds. Furthermore, while latches have been recognized as an essential part of many elastic systems, their role in mediating the storage and release of elastic energy from the spring is only now being elucidated. Here, we critically examine the metrics and concepts of power amplification and encourage a framework centered on latch-mediated spring actuation (LaMSA). We emphasize approaches and metrics of LaMSA systems that will forge a pathway toward a principled, interdisciplinary field.


Assuntos
Tecido Elástico , Modelos Biológicos , Movimento/fisiologia , Animais , Fenômenos Biomecânicos , Contração Muscular , Músculo Esquelético/fisiologia , Tendões/fisiologia
5.
Mol Phylogenet Evol ; 113: 33-48, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28487262

RESUMO

Phylogenetics is undergoing a revolution as large-scale molecular datasets reveal unexpected but repeatable rearrangements of clades that were previously thought to be disparate lineages. One of the most unusual clades of fishes that has been found using large-scale molecular datasets is an expanded Syngnathiformes including traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), as well as a diverse set of largely benthic-associated fishes (Callionymoidei, Dactylopteridae, Mullidae, Pegasidae) that were previously dispersed across three orders. The monophyly of this surprising clade of fishes has been upheld by recent studies utilizing both nuclear and mitogenomic data, but the relationships among major lineages within Syngnathiformes remain ambiguous; previous analyses have inconsistent topologies and are plagued by low support at deep divergences between the major lineages. In this study, we use a dataset of ultraconserved elements (UCEs) to conduct the first phylogenomic study of Syngnathiformes. UCEs have been effective markers for resolving deep phylogenetic relationships in fishes and, combined with increased taxon sampling, we expected UCEs to resolve problematic syngnathiform relationships. Overall, UCEs were effective at resolving relationships within Syngnathiformes at a range of evolutionary timescales. We find consistent support for the monophyly of traditional long-snouted syngnathiform lineages (Aulostomidae, Centriscidae, Fistulariidae, Solenostomidae, Syngnathidae), which better agrees with morphological hypotheses than previously published topologies from molecular data. This result was supported by all Bayesian and maximum likelihood analyses, was robust to differences in matrix completeness and potential sources of bias, and was highly supported in coalescent-based analyses in ASTRAL when matrices were filtered to contain the most phylogenetically informative loci. While Bayesian and maximum likelihood analyses found support for a benthic-associated clade (Callionymidae, Dactylopteridae, Mullidae, and Pegasidae) as sister to the long-snouted clade, this result was not replicated in the ASTRAL analyses. The base of our phylogeny is characterized by short internodes separating major syngnathiform lineages and is consistent with the hypothesis of an ancient rapid radiation at the base of Syngnathiformes. Syngnathiformes therefore present an exciting opportunity to study patterns of morphological variation and functional innovation arising from rapid but ancient radiation.


Assuntos
Sequência Conservada/genética , Genômica/métodos , Filogenia , Smegmamorpha/genética , Animais , Composição de Bases/genética , Sequência de Bases , Teorema de Bayes , Funções Verossimilhança , Alinhamento de Sequência , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...